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Abstract—Real-time systems with hard timing constrains re-
quire known upper bounds on each task’s worst-case execution
time (WCET) to determine if all deadlines can be met. One
challenge in predictable execution is that Dynamic Random
Access Memory (DRAM) cells must be refreshed periodically to
maintain data validity, yet memory remains blocked during re-
fresh, which results in overly pessimistic WCET bounds. This
work contributes “Colored Refresh” to hide DRAM refresh
overhead while preserving real-time schedulability for cyclic ex-
ecutives, which are widely used in highly critical systems. Colored
Refresh partitions DRAM memory at rank granularity such that
refreshes rotate round-robin from rank to rank. Real-time tasks
are assigned different ranks via colored memory allocation. By
cooperatively scheduling real-time tasks and refresh operations,
memory requests no longer suffer from refresh interference. This
reduces memory access latencies for tasks irrespective of DRAM
density and size. Hence, Colored Refresh reduces a task’s WCET
and makes its execution more predictable.

I. INTRODUCTION

DRAM is the de-facto standard memory technology of
contemporary computers. Data is stored in DRAM cells that
slowly leak their charge, i.e., they need to be refreshed to
avoid loss of data. The DRAM controller periodically issues
refresh commands, which are sent to DRAM devices. This
mode is called auto-refresh and recharges all memory cells
within the “retention time”, typically 64ms for commodity
DRAMs [1]. In this mode, a refresh command is issued
per interval, tREFI , for a duration/completion by tRFC.
During a refresh, a memory space (i.e., DRAM rank) becomes
unavailable to memory requests (read or write) so that any
such memory reference blocks until the refresh completes.
Furthermore, a refresh closes all bank row buffers of this
rank, even though spatial and temporal locality make future
row buffer hits likely. As a result, memory accesses suffer
from unpredictable bank row buffer misses around refreshes.
These factors contribute not only to an increase in memory
latency but also to significant latency fluctuations. In addition,
as the density and size of DRAM grow, particularly due to
the application of machine learning in embedded environments
that require many Gigabytes of memory, more DRAM cells
are required per DRAM chip, which must be refreshed within
the same DRAM retention time, i.e., more rows need to be
refreshed in one refresh cycle. This increases the length of a
refresh operation and thus reduces memory throughput [2], [3],
[4], [5].

Although the DRAM refresh impact can be reduced by
proposed hardware solutions [6], [7], [8], [9], [10], such
solutions take a long time before they become widely adopted.
Hence, other work seeks to assess the viability of software
solutions. RAIDR [2] lowers refresh overhead by exploiting

inter-cell variation in retention time. RAPID [11] sorts pages
by retention time and allocates long retention pages first. Smart
Refresh [12] reduces unnecessary refreshes by maintaining
a refresh-needed counter. Fine Granularity Refresh (FGR),
proposed by JEDEC’s DDR4 specification, reduces refresh
delays by trading off refresh latency against frequency [13].
These approaches either heavily rely on specific data access
patterns of workloads, or they have high implementation over-
head. None hide refresh overhead to the extend that our work
does. The refresh problem is even more significant for real-
time systems because predictable memory access latencies are
imperative to assess task schedulability [14]. Today’s variable
access latencies due to refreshes are counter-productive to tight
bounds on a task’s WCET, a problem that is only increasing
with higher DRAM density/sizes. Due to the asynchronous
nature of refreshes relative to task schedules and preemptions,
none of the current analysis techniques tightly bound the effect
of DRAM refreshes on WCET. Atanassov and Puschner [15]
discuss the impact of DRAM refresh on the execution time of
real-time tasks and calculate the maximum possible increase
of execution time due to refreshes. However, this bound is
too pessimistic (loose): If the WCET were augmented by
the maximum possible refresh delay, many schedules would
become theoretically infeasible, even though executions may
make deadlines in practice. Also, as refresh overhead increases
approximately linearly with growing DRAM density, it quickly
becomes untenable to augment the WCET by ever increasing
refresh delays for future high density DRAM. Bhat et al. make
refreshes predictable and reduce the number of preemption
due to refreshes by triggering them in software instead of
hardware auto-refresh [16]. While they consider the cost of
refresh operations, it cannot be hidden.

This work contributes “Colored Refresh” to hide DRAM
refresh overhead entirely. Colored Refresh makes real-time
systems more predictable, particularly for large DRAM sizes
that are required for machine learning. It exploits colored
memory allocation to partition the entire memory space such
that each real-time task receives different ranks. More sig-
nificantly, refreshes and competing memory accesses can be
strategically co-scheduled so that memory reads/writes do not
suffer from refresh interference. As a result, access latencies
are reduced and memory throughput increases, which tends to
result in schedulability of more real-time tasks. What is more,
the overhead of Colored Refresh is small and remains stable
irrespective of DRAM density/size. In contrast, auto-refreshed
overhead keeps growing as DRAM density increases.

Contributions: (1) The impact of refresh delay for real-
time systems under varying DRAM densities/sizes is shown
to be hard to predict for auto-refresh and to increase with
DRAM density to the point where deadlines will be missed.



(2) Colored Refresh is contributed, which refreshes DRAM
using memory coloring. Refresh overhead is hidden since a
memory rank is either being accessed or being refreshed, but
not both. Thus, memory accesses no longer suffer from refresh
interference, i.e., refreshes are hidden in a safe manner. (3)
Experiments with Malardalen benchmarks confirm that both
refresh delays are hidden and DRAM access latencies are
reduced. Consequently, application execution time becomes
more predictable and stable, even when DRAM density in-
creases. (4) An experimental comparison with DDR4’s FGR
shows that Colored Refresh exhibits better performance and
higher task predictability. (5) Our mechanism uses existing
DRAM controller-initiated refresh capabilities and is otherwise
implemented in software; no hardware change is required.

II. BACKGROUND

DRAM Architecture: DRAM requests from the CPU are
relayed by the memory controller, which acts as a mediator
between the last-level cache (LLC) and DRAM devices. As a
DRAM controller receives memory transactions from its mem-
ory controller, it translates memory requests into corresponding
DRAM commands and schedules them while satisfying the
timing constraints of DRAM banks and buses.

A DRAM bank array is organized into rows and columns
of individual data cells (see Fig. 1). When a memory access
request is resolved, the corresponding row that contains the
data is selected and pulled from the bank array into the row
buffer incurring a Row Precharge (close the old row in buffer)
delay, tRP , and a Row Access Strobe (activate the new row)
delay, tRAS. This is called a row buffer miss. Once loaded into
the row buffer and opened, accesses of adjacent data in a row
(spatial locality) incur just a Column Access Strobe penalty,
tCAS (row buffer hit) of much lower cost than tRP + tRAS
assuming an open page policy.

Fig. 1. DRAM Bank Architecture

DRAM Refresh: DRAM cells need to be recharged peri-
odically to counter electric leakage and maintain data validity.
The reference refresh interval of commodity DRAMs is 64ms
under 85◦C (185◦F), the so-called retention time (R) of leaky
cells, sometimes also called refresh window (tREFW) [1], [13],
[17], [18]. To prevent data loss, all rows in a DRAM chip
need to be refreshed within R (or tREFW). In order to reduce
the refresh overhead, memory in each DRAM chip is divided
into ranks, which are refreshed in parallel [19]. The DRAM

controller can either schedule an automatic refresh to all ranks
simultaneously (simultaneous refresh), or schedule automatic
refresh commands to each rank independently (independent
refresh). Whether simultaneous or independent, each memory
refresh cycle affects a successive area of multiple cells in
consecutive cycles. This area is called a “refresh bin” and
contains multiple rows. The DDR3 specification [1] requires a
DRAM controller to send 8192 automatic refresh commands to
refresh the entire memory (one command per bin at a time).
Here, the gap between two refresh commands, the so-called
refresh interval (tREFI), is 7.8us (tREFW/8192). The so-called
refresh completion time (tRFC) is the refresh duration per bin.
Auto-refresh is triggered in the background by the DRAM
controller while the CPU executes instructions.

Depending on the memory technology generation, the
refresh granularity may vary. Nonetheless, memory ranks are
unavailable during a refresh cycle (for tRFC units of time),
i.e., memory accesses (read and write operations) to this region
will stall the CPU during a refresh cycle. The resulting refresh
overhead is tRFC/tREFI. As DRAM chip densities and sizes
grow, each refresh bin contains more rows and the overall size
becomes larger. But the more rows in a refresh bin, the longer
the refresh delay and rank blocking times become. Refresh
latency (equivalent to tRFC) is delimited by power constraints.
Table I shows that the size of a refresh bin expands linearly
with memory density, i.e., tRFC increases rapidly as DRAM
density grows and exceeds 1us at 32 Gb DRAM, even with
conservative estimates of growth in density for scaling DRAM
technology [2]. Ranks can be refreshed in parallel under auto-
refresh, but this increases the amount of unavailable memory
during a refresh. A fully parallel refresh blocks the entire
memory space for tRFC. Such blocking not only decreases
system performance, but may inflict deadline misses unless
considered in a blocking term for schedulability analysis.

Tab. I. tRFC per DRAM densities (data from [1], [13], [2])

Chip Density total rows number of rows per bin tRFC

1Gb 128K 16 110ns

2Gb 256K 32 160ns

4Gb 512K 64 260ns

8Gb 1M 128 350ns

16Gb 2M 256 550ns

32Gb 4M 512 ≥ 1us

64Gb 8M 1K ≥ 2us

As a side effect of DRAM refresh, a row buffer is first
closed, i.e., its data is written back to the data array and
any memory access is preempted. After the refresh completes,
the original data is loaded back into the row buffer, and the
deferred memory access can continue. In another words, the
row which contains data needs to be closed and re-opened due
to interference between refresh and an in-flight memory access.
To close and re-open rows incurs an additional overhead of
tRP + tRAS since the refresh purges all buffers and often
results in additional row buffer conflict misses, i.e., decreased
memory throughput. Liu et al. [2] observe that the loss in
DRAM throughput due to refreshes becomes untenable for
large memories, reaching nearly 50% for 64 Gb DRAM.

Considering the cost of a refresh operation itself and the
extra row close/re-open delay, DRAM refresh both decreases



memory performance and results in fluctuating response times
of memory accesses. The asynchrony of refreshes plus task
preemptions make it hard to accurately predict and bound
DRAM refresh delay.

Refresh Mode and Scheduling Strategy: For commodity
DDRx (e.g., DDR3 and DDR4), refresh operations are issued
at rank granularity. A single refresh command for a given rank
precharges all banks under this rank, which is called “All-
Bank” refresh [19]. In contrast, recent LPDDRx DRAM [20]
supports an enhanced “Per-Bank” mode to refresh cells at bank
level while other banks in the same rank may be serviced. “Per-
Bank” consumes more refresh time overall than “All-Bank”
but achieves higher bank parallelism [21]. A refresh counter
per rank maintains the address of the row to be refreshed
and applies charges to the chip’s row address lines. A timer
then increments the refresh counter to step through the rows.
Depending on when a refresh command to a bin (successive
rows) is sent, two strategies exist: distributed and burst refresh.

Distributed Refresh: A single refresh operation is per-
formed periodically (see upper Fig. 2). Once all rows are
refreshed, the refresh cycle is repeated from the first row.
With distributed refresh, the DRAM response time for memory
accesses varies over a wide time range due to the spread of
refreshes, and due to closing the row buffer time and again.

Burst refresh: A series of refresh cycles are performed,
one after another (tREFI = tRFC), until all rows have been
refreshed (see lower Fig. 2). After that, the memory is available
for memory accesses until the next refresh. A burst refresh
results in long periods of memory unavailability, which also
affects task execution and results in longer memory latencies,
yet such bursts occur less frequently.

Fig. 2. DRAM Refresh Strategy

III. DESIGN

The problem with the standard hardware-controlled auto-
refresh is the interference between periodic refresh commands
generated by the DRAM controller and memory access re-
quests generated by the processor. The latter ones are blocked
once one of the former are issued until the refresh completes.
Since refreshes are asynchronous, memory latency becomes
highly variable and unpredictable. The central idea of our
approach is to hide DRAM refresh interference by memory
partitioning (coloring) while making refresh synchronous to
task execution. We partition memory so that each application
is assigned a colored DRAM region. A real-time schedule can
be adapted such that memory accesses will not be subject to
interference by DRAM refreshes due to refresh-triggered task
switching as described next.

Assumptions: Let a given real-time task set be schedulable
under auto-refresh, i.e., the worst-case blocking of refresh is

taken into account during schedulability analysis, including
the row buffer misses due to closed rows. To this end, each
worst-case execution time, ei, is padded, by the refresh
burst tBST = m × tRFC, where m = ⌈ei/tREFI⌉. For
a cyclic executive [22], [23], widely used in highly critical
systems [24], ei is iteratively calculated by determining the
fixed point for

ei(n) = ei(0) + tRFC ∗ ⌈ei(n− 1)/tREFI⌉, (1)

where ei(0) is the original execution time before padding. We
assume that tasks are independent, except for tasks that are
sliced or copied, as discussed later. Henceforth, we will use
ei from Eq. 1 unless mentioned otherwise. In addition, for an
application with input, we assume its maximum (worst-case)
memory requirement can be triggered by a known input (in our
experiments assumed to be the largest input). Furthermore, we
also assume the timers in both task scheduling and DRAM
refresh to be synchronized by the on-chip hardware clock,
which is the case in practice [16].

A. Memory Space Partitioning

A memory node consists of one memory controller and
multi-level resources, namely channel, rank, and bank. Banks
are accessed in parallel to increase memory throughput. We
obtained a copy of TintMalloc [25], an allocator that “col-
ors” memory pages with controller and bank affinity suitable
for NUMA architectures. With TintMalloc, programmers can
select one (or more) colors to choose a memory controller
and bank regions disjoint from those of other tasks. DRAM
is further partitioned into channels and ranks above banks.
The memory space of an application can be chosen such
that it conforms to a specific color. For example, a real-
time task can be assigned a private memory space based on
rank granularity. When this task runs, it can only access the
memory rank allocated to it. No other memory rank will
ever be touched by it. With proper application design, this
overhead of colored allocations impacts only the initialization
phase and remains constant for a stable working set size,
i.e., after their initialization, real-time tasks experience highly
predictable latencies for subsequent memory requests.

B. Notation

Given that the memory space of a DRAM chip can be
partitioned into multiple “colors” based on the DRAM archi-
tecture, such as node, channel, rank, and bank, our objective
is to design a novel “Colored Refresh” policy, which sys-
tematically schedules DRAM refreshes based on DRAM rank
coloring, i.e., at the refresh granularity level. By cooperatively
scheduling task execution and DRAM refresh, Colored Refresh
can hide the refresh overhead for real-time tasks and guarantee
system schedulability. Most DRAM controllers allow the re-
tention interval, R, to be configured [16] and can control which
rank should be sent a refresh command. With Colored Refresh,
the memory of a DRAM chip is refreshed by iterating over
the ranks such that all tasks are colored by different DRAM
ranks via TintMalloc. While we consider the most common
DDR technology with rank refreshes in the following, our
techniques are equally applicable to LPDDR and RLDRAM
technology [26], where refreshes can be controlled at bank
granularity. This simply requires coloring at bank level, which
TintMalloc also supports.



Let us denote the set of periodic real-time tasks as
T = T1...Tn, where each task, Ti, is characterized by
(φi, pi, ei, Di), or (pi, ei, Di) if φi = 0, or (pi, ei) if pi = Di

for a phase φi, a period pi, (worst-case) execution time ei,
relative deadline Di per task, and a hyperperiod H of T [27].
Also, let
R be the DRAM retention time,
L be the least common multiple of H and R, and
K be the number of DRAM ranks, and let ki denote rank
i. Let us further consider a cyclic executive schedule for T ,
where
f is the frame size and fi denotes the ith frame (all of same
size),
F is the number of frames in H . We next describe different
refresh options.

C. Per-Rank Distributed, Harmonic Refresh

Let us first consider a schedule where the hyperperiod, H ,
is harmonic to the DRAM retention time, R. With Colored
Refresh, the entire DRAM space is equally partitioned into
“colors”, such that each color contains one or more DRAM
ranks. Refreshes are also equally divided over the number
of frames following a one-to-one correspondence with colors,
where ci denotes color i of C total colors.

Example 1: Consider three real-time tasks, A=(16,4),
B=(32,12), C=(64,16). For this task set, H=64ms (harmonic to
R). Hence, L=64ms. Let f = 8 (explained later). This requires
that tasks be arranged into frames of the cyclic executive’s
table according their periods and deadlines, and memory is
colored according to Colored Refresh.

Fig. 3 depicts a feasible cyclic schedule for the above
example. Above, c(serial) indicates the rank being refreshed.
Since the execution time of B and C exceed f , their jobs
need to be split into slices [22], [23] arranged by the network
flow algorithm [28]. As shown in Fig. 4, a flow graph consists
(left-to-right) of source, a layer of job nodes, a second layer of
frame nodes, and a sink. Edges from the source are weighted
by ei/ei, edges from jobs to frames are weighted by the
fractional execution of a job placed in a frame, and edges from
frames to sink are weighted by the aggregate utilized frame
times over total frame length f . In the example, jobs 1 and 2
of task B are split over frames {1, 2} and {5, 6}, respectively,
while the job of C is split over {3, 4, 7} by the network
flow algorithm. Since the in-flow of 7 equals the out-flow, the
schedule is valid. An invalid schedule would have an out-flow
less than in-flow due to fractional ei of a job that cannot be
placed in a frame subject to release and deadline constraints
relative to available frame times (which is further constrained
by rules in Sec. III-G discussed later). A constructive algorithm
may try to create edges from jobs to frames in a deadline-
monotonic manner until is succeeds to place all execution or
fails to do so. Task splitting can commonly be accomplished
by refactoring a loop into consecutive subranges of loops per
subtask that add up to the original loop length.

The schedule of Fig. 3 has a memory coloring solution
for each task given in Table II. The entire DRAM space is
refreshed by iterating over all 8 ranks, and the refresh duration
of each rank is 8ms (R/K). Within one rank’s refresh duration,
all the refresh operations are scheduled as “burst refresh” (see

Fig. 3. Harmonic Schedule for H,R

Fig. 4. Flow Graph for Task Splitting

Section II). Since f=8 and R=64 ms, we get F=8. This means
all tasks are placed in 8 frames, and the entire memory space
is grouped into 8 colors, where each color contains one rank.
Throughout the schedule, one rank is under refresh during
its corresponding frame while all other ranks are refresh-free
during this frame.

Tab. II. Memory Assignment per Task

T Occupied frames available memory ranks (ki)

A f1, f3, f5,f7 c2,c4,c6,c8
B f1, f2, f5, f6 c3,c4,c7,c8
C f3, f4, f7 c1,c2,c5,c6,c8

D. Rank-Parallel, Harmonic Refresh

The DDR standard specifies that different ranks may be re-
freshed in parallel. Consider Fig. 3 again. Instead of refreshing
one color (rank) per frame, we could refresh multiple colors at
once (in a frame) in parallel. In the example, all ranks could
simply be refreshed in frame 8 since the processor remains
idle then, i.e., all colors (ranks) would become available to all
tasks. As indicated by c(par-1) in the figure, this requires either
a phase of φ = 56 for the retention interval, R, relative to H
or a software-triggered refresh burst at t = 56 synchronously
triggered by the cyclic executive.

Let us consider schedules with tasks in every frame. We
could then choose a subset of frames occupied by disjoint
tasks so that refreshes are triggered only in these frame. In
Fig. 3, we could choose frames 1 and 4 to refresh ranks k5...k8
and k1...k4, respectively. A feasible color assignment would
be ((A, k2), (B, k3), (C, k5)) as no task execution coincides
with a refresh in the same frame. As indicated by c(par-2)
in the figure, two hardware refreshes with a period of H and
phases φ1 = 0, φ2 = 24 would be required for frames 1 and
4, respectively.



Notice that there is no solution for parallel, zero-phased,
single harmonic refreshes: If frame 1 was chosen, the colors
for tasks A and B could not be refreshed, and ditto for frames
1 and 5. For frames 1, 3, 5, and 7, A’s colors could not be
refreshed, which only leaves the serial solution of one refresh
per frame discussed before.

A phase of φ = 8 works for frames 2, 4, 6, 8. And φ = 24
works for frames 4, 8 but fails for other dual frame harmonic
selections. However, if frame 8 was included, a refresh during
frame 8 with φ = 56 suffices to refresh all ranks in parallel,
which also simplifies the method.

E. Copy Tasks

Should hardware capabilities or system design constraints
not allow phasing, then a zero-phased rank-parallel refresh can
be devised for the given example by introducing the novel
concept of a “copy task”.

Definition: Given a task T , a copy task, T ′, has identical
control flow but, for both code and data, is referencing memory
allocated from a different color. Local variables are segregated
by executing on different stacks for T and T ′. Heap and
global variables of the original are combined in duplicate
heap and global sections by transforming the source program
accordingly. Code is duplicated as well for these colors. When
the next job of a task has a different instance than the current
one, the local/global/heap variables of the current are copied
to the next job’s memory space if jobs of this task are data
dependent. This overhead is analyzed in Sec. III-L.

In Fig. 3, let A′ and B′ be the instances executed during
the second half of H (t=32..64). As indicated by c(par-3) in
Fig. 3, the colors (3..8) of A,B,C could be refreshed in frame
5 while colors (1,2) of A′, B′ can be refreshed in frame 1. This
establishes a rank-parallel zero-phased refresh solution.

F. Rank-Parallel, Non-Harmonic Refresh

If H and R are non-harmonic, one task may occupy all
frames in a refresh period L so that no solution for refreshing
exists. This can be addressed in two ways, either by copy tasks
or by adjusting the retention interval R.

Example 2: Consider a task set A=(20,8), B=(40,16). We
still assume R=64 ms and K=8. In this case, H=40 ms and
L=320 ms. Let f=8 (explained later). Fig 5 shows a feasible
cyclic schedule. All frames are occupied by both A and B
(Tab. III), i.e., no frames remain available.

Fig. 5. Non-harmonic Schedule

Tab. III. Memory Assignment per Task

T Occupied frames available memory ranks (ki)

A f1, f2, f3, f4, f5, f6, f7, f8 none

B f1, f2, f3, f4, f5, f6, f7, f8 none

We can hide refresh overhead via copy tasks, A′ and B′,
for both A and B. When a job of this task is released, an
instance is chosen for execution that differs from the color
under refresh. With refresh phasing, let color 1 be refreshed
during A/B in frame 1 while color 2 is refreshed during
A′/B′ in frame 2. For all other frames, either instance may
execute (no refresh). Hence, all DRAM refresh overhead is
hidden from task execution and thus need not be considered
for schedulability analysis. Without refresh phasing, frames 1
and 5 may be chosen for refresh of color 1 and 2 plus A/B or
A′/B′ execution, if indicated by the schedule, complementary
to the refresh color.

An alternative solution is to make the retention interval, R,
harmonic to H . Consider R = H = 40 for example 2. One
solution would be to refresh the colors of A and B in frames
1 and 2, respectively, with all other frames being refresh free.
Another solution would be to perform all refreshes in frame 5,
which is idle. In practice, system designers may only have the
ability to alter the default retention interval of 64ms if they
design the entire system. In many cases, ECUs of different
manufacturers are integrated that have to adhere to common
parameters, i.e., a fixed retention interval of 64ms, which is
the factory default for any system today. To this end, we have
developed a policy and algorithms to select frame and colors
for refresh as well as assign colors to tasks in a systematic
manner assuming a fixed retention interval without phasing.

G. Generalized Colored Refresh

We construct a cyclic executive schedule for T , where
f is the frame size and fi denotes the ith frame (all of same
size),
F is the number of frames in one R cycle, i.e., F = R/f .
Thus, F is equal to the total number of colors, i.e., F = C.
After a refresh duration of tRFC, any ranks in the ith set
ci are refreshed within the ithframe fi. By selecting an
appropriate frame size (f ), Colored Refresh can strategically
co-schedule tasks and DRAM refresh to hide refresh overhead
and guarantee schedulability. The basic idea is to alternate
between a burst refresh for one set of ranks and another set
of ranks, where ranks of each set are refreshed in parallel. We
select an appropriate f using 5 rules:
(1) f ≤ min1≤i≤n(pi/2), i.e., burst refreshes can alternate
once all tasks are assigned disjoint memory colors under
Colored Refresh.
(2) ⌊R/f⌋ − R/f = 0, i.e., f should divide R since DRAM
refresh should be synchronous to the cyclic executive.
(3) 2f − gcd(pi, f) ≤ Di for all i so that a task can execute
in either of two adjacent frames.
(4) ⌊f/(R/K)⌋ − f/(R/K) = 0, i.e., R/K should divide f
so that refresh becomes synchronous to other tasks and frames
can be colored.
(5) Frames must be sufficiently long so that every job can ex-
ecute non-preemptively within them, i.e., f ≥ max1≤i≤n(ei).

Consider example 1 in Fig. 3 again. With a given A=(16,4),
B=(32,12), C=(64,16), and R=64 ms, let K=8, which means
there are 8 ranks that should be refreshed every 64ms.
H=64ms, which is harmonic with R. Hence, L=64ms.
By (1), f ≤ 8.
By (2), f can be 2, 4, 8, 16 or 32.
(3) and (4) hold for f=8.



By (5), B and C are split into multiple job slices since their
execution time is longer than f=8. Notice that besides the
schedule in Fig. 3, other valid orders exist due to (3), e.g, the
first two frames could be B and B,A, respectively.

From the allocation rule for fi and Fig. 3, we can identify
the available colors per task (see Table II), which are not being
refreshed when the task runs. Colored Refresh assigns memory
from these “available colors” though TintMalloc. Furthermore,
memory requirements of all tasks should be satisfied after
coloring. In this example, assuming a requirement of 1 rank per
task, a feasible color assignment is ((A, k2), (B, k3), (C, k5)).

Consider the 5 rules (2 of them derived from [22], [23]) in
general. We select an appropriate frame size (f ) for a real-
time task set. F frames are scheduled iteratively every R
cycles, and all colors are refreshed within each R interval.
Jobs are scheduled and placed in frames via the network flow
algorithm [28]. Colored Refresh scans all frames within L and
enumerates on a per-task basis the “available colors”, which
are the frames of a certain color not occupied by this task.
Colored Refresh selects one of the available colors at a time
to allocate memory from ranks conformant to the coloring
policy. As a result, any real-time task only accesses refresh-free
memory ranks within its execution. Thus, memory accesses
are cooperatively scheduled with refresh operations, while the
refresh overhead remains hidden from task execution.

H. Modifications to the Task Set

Some conditions may require a task set T to be modified:

• Condition (5) may not be satisfied by tasks Ti with long
executions, where ei > f . A well-known technique to address
this is to split such tasks into job slices [22], [23], e.g., k =
1..m with eik = f for k < m and eim = ei−(m−1)×f , and
then distribute them over the set of frames using the network
flow algorithm [28] — in our case in conjunction with Colored
Refresh to select colors for each frame.

Theorem 1: A task set schedulable as a cyclic executive
can always be scheduled with a frame size in (0, Dmin/2],
e.g., any positive number less than Dmin/2 is an appropriate
frame size for cyclic executive scheduling, where Dmin =
min(D1, D2...Dn) is the minimum deadline among all tasks.

Proof: The selection of the frame size in a cyclic executive
is determined by rules (3)+(5) [22], [23]. If f ≤ Dmin/2, then

2f − gcd(pi, f) ≤ Dmin − gcd(pi, f) < Dmin ≤ Di,
i.e., for any frame size less than Dmin/2, rule (3) holds.

Furthermore, rule (5) can be met by task splitting [22],
[23]. Hence, any frame size within (0, Dmin/2] is appropriate
for a task set under cyclic executive scheduling.

• Conditions (1)+(4) may not be simultaneously satisfied
as a task may occupy all frames and its available color set is
empty, e.g., tasks with short periods pi < 2f or periods that
do not divide the minimum frame size f = R/K. In this case,
Colored Refresh creates two instances of a task, the original
one and a so-called “copy tasks”. When a job of this task is
released, Colored Refresh selects the instance to execute with a
color that is currently not being refreshed. The job instance can
be statically determined for cyclic executives over L, which
enumerates all job instances. When the next job is a different

instance from current one, the local/global/heap variables of
the current are copied to the next job’s memory space if jobs
of this task are data dependent. An arbitrary number of “copy
tasks” can be created in order to satisfy different numbers of
colors. The number of colors is determined by the amount
of DRAM ranks in the system, and Colored Refresh usually
selects an even number of colors. But odd numbers of colors
are also supported by Colored Refresh. When the number of
colors is odd, more than two instances are created by task
copying. For example, three instances are needed (the original
one and two “copy tasks”) when there are 3 colors in system.
Multiple “copy tasks” can be assigned the same memory color
to save memory space.

Consider example 2 again, where H and R are non-
harmonic with task set A=(20,8), B=(40,16), with R=64 ms
and K=8. We determined H=40 ms and L=320 ms. Here,
(1)-(5) hold for f=8. Fig 5 showed a feasible cyclic schedule
for this frame size. Copy tasks, A′ and B′, were required as
discussed before.

• Conditions (1)-(4) may not be simultaneously satisfied by
a task set that requires a small f , e.g., an f derived from rule
(3) that is less than the minimum frame size in rule (4). A novel
technique to address this problem is to fuse multiple frames
repeatedly into a “virtual frame”, f ′, until this virtual frame
fulfills the requirement of minimum frame size according to
rule (4), i.e., until f ′ ≥ R/K. By fusing adjacent frames, (see
Algorithm 1), a task set with a small f is transformed into one
with a virtual frame f ′ that is still scheduled by rules (1)+(3)
but with memory colors derived from Colored Refresh based
on the virtual frame size to satisfy rules (2)+(4).

Example 3: Consider R=64ms, K=8ms as before and a
task set A=(3,2), B=(6,1) with f=3ms due to rules (3)+(5),
the original rules for cyclic executives [22], [23]. Rule (2) is
violated and can only be satisfied in conjunction with rules
(1)+(3) for f = 1ms, which requires Task A to be split
into A1 and A2 in order to satisfy rule (5). Now, rule (4)
is violated, i.e., frames cannot be colored since the smallest
coloring granularity is f = R/K = 8ms. We now fuse
adjacent frames together until f ′ = 8f = 8ms satisfies rule
(4). While scheduling occurs at f = 1ms, refresh and coloring
is coordinated at f ′ = 8ms. To this end, “copy tasks” A1’,
A2’, and B’ are created, which will be scheduled in a frame
where the colors of A1, A2, and B are being refreshed. Colors
are chosen by Colored Refresh from the available color not
under fresh. Under f ′, L=192 and it suffices to execute A1’
at t=96 and t=160 assuming that A1,A2 have one color while
A1’,B have another color. Thus, A2’ and B’ are not required
in the example.

Algorithm 1 illustrates how frame fusion is accomplished,
which is based on rules (2)+(4): f ′ = i ∗ f = R

K
∗ j and

m ∗ f ′ = R, where i, j, m are integers and m ∗ j = K. Since
R
K

represents the memory coloring granularity, we require f

to divide R/K (rule (4)), i.e., j
i

is an integer.

• A huge task is a task that allocates memory larger than
the available refresh-free memory within DRAM, which is
constrained by the number of memory ranks currently not
under refresh while the task executes. For a system with K
ranks, a huge task would have to exceed K − 1 ranks in size,
which means that a single task essentially monopolizes almost



Algorithm 1 Frame Fusion

1: for f in (0, Dmin/2] do

2: f ′ = f , i = 1
3: while f ′ ≤ R do

4: f ′+ = f , i++
5: if (f ′ mod R

K
) == 0 then

6: j = f ′/( R

K
)

7: if (i mod j) == 0 then

8: return f and f ′

9: else

10: continue
11: end if
12: end if

13: end while

14: end for

all memory for a large K, or that memory is relatively limited
to begin with, say K=2, and more than half the memory is used
by a single task (for K=2). If we account for such rare cases
of skewed memory distribution, the refresh overhead of a huge
task cannot be completely hidden but it can be constrained to
a single burst of tBST . Only one such huge task may exist
(due to memory capacity limits) per task set, i.e., this is a
singular overhead term for this task’s ei. We do not consider
huge tasks in the following as they are rare corner cases, which
can be handled by assessing for their refresh overhead in the
traditional manner as blocking.

I. Schedulability of Colored Refresh

For the following theorem, let us assume that task
copy/split overhead is zero.

Theorem 2: Any task set (without a huge task) that
is schedulable as a cyclic executive under auto-refresh by
considering refresh delays in its execution time as a blocking
term is also schedulable under Colored Refresh.

Proof: If a task set is schedulable as a cyclic executive,
there exists an appropriate frame size to schedule it. This
appropriate frame size should satisfy rules (3) and (5), see [22],
[23]. With Colored Refresh, the frame size f is further
constrained by (1), (2), and (4). What needs to be shown is
that these rules do not further constrain the choice of f .

Let f̂ be an appropriate frame size for the cyclic executive
of the uncolored task set that guarantees schedulability without
coloring by satisfying rules (3) and (5). We then need to find
a new frame size, f , that satisfies rules (3) and (5) as well as
the new rules (1), (2) and (4). We need to show that a task set

is schedulable with f if it is schedulable with f̂ .

Case 1: There exists an f that satisfies rules (1)-(5), i.e.

f = f̂ . Then this f is a solution.

Case 2: Any of the f̂ candidates that satisfy rules (3) and
(5) do not satisfy one or more of the rules (1),(2),(4). Let
fmin = R/K, which is the minimum frame size established
by rules (2) and (4), i.e., both rules hold.
Let a task have a period pi < 2 ∗ (R/K), which violates rule
(1), and denote this task as Tc with a phase φc. For any such
Tc, by creating “copy tasks”, multiply their period by x and

create x instances (the original one and x−1 “copy tasks”). T
′

c

with its enlarged period has an identical deadline and execution
time but a phase of φc+pc∗i, where i ∈ [0, x−1]. Furthermore,

let Colored Refresh assign memory colors for these (x) tasks,
and select an appropriate x by copying tasks until (1) holds.
Here, rule (1) is satisfied by creating “copy tasks”, while rule
(5) is satisfied by “task splitting” (as discussed before). As a
result, what needs to be shown is that f exists and satisfies
rules (2)+(3)+(4).

Case 2a: If f̂ ≥ fmin, we can always find an appropriate

f which is in [fmin, f̂ ] to schedule tasks, i.e., since the frame

size is equal or smaller than f̂ , there are at least as many
frames between the release of a task and its deadline for f as

there were for f̂ , so (2), (3) and (4) hold for all tasks i.

Case 2bi: if f̂ < fmin ∧ fmin ≤ Dmin, where Dmin =
min(D1, D2...Dn), we can always find an appropriate f which
is in [fmin, Dmin] to schedule tasks by creating “copy tasks”.
The period of the resulting set of “copy tasks” can be increased
to be divisible by f , i.e., f = gcd(pi, f). As a result, there
exists an f in [fmin, Dmin] to satisfy rules (2)+(3)+(4), and
by choosing such an f , all rules are satisfied.

Case 2bii: if f̂ < fmin ∧ fmin > Dmin, we can find an f
such that ⌈fmin/f⌉−fmin/f = 0, i.e., fmin is integer divisible
by f . Furthermore, f is chosen such that it also satisfies rule
(3), i.e., f ≤ Di. Then f is used for scheduling frames. We
further construct a “virtual frame”, f ′, by fusing frames of
size f so that f ′ is a multiple of fmin and such that rules
(2)+(4) hold for f ′, where f ′ is used for coloring (see Example
3). Furthermore, each f is associated with a memory color
according to which virtual frame f ′ it belongs to. Hence, rules
(2)+(3)+(4) hold by utilizing f ′ and f together.

Thus, for a task set in Case 2 with Colored Refresh,
an f exists that satisfies all 5 rules and provides a solution
to guarantee schedulability. Hence, the rules under Colored
Refresh do not constrain the choice of f .

J. Utilization

With Colored Refresh, system utilization is enhanced com-
pared to auto-refresh. With auto-refresh, the blocking time
of refresh operations has to be considered when deriving the
worst case execution time (WCET) using the original ei (i.e.,
not the modified one from Eq. 1). Assuming a task set can be
scheduled under auto-refresh within a time span t, where

t ≥
∑n

i=1
⌈ t
pi

⌉ ∗ ei + bt,
and bt represents the blocking term due to DRAM refresh
within t calculated as

bt =
t

tREFI
∗ tRFC.

As a result, the upper bound on system utilization under auto-
refresh is

U = t−bt
t

=
t− t

tREFI
∗tRFC

t
= 1− tRFC

tREFI
.

With Colored Refresh, the blocking term can be removed since
the DRAM refresh overhead is hidden for real-time tasks, i.e.,
tRFC = 0 and the 2nd term in Eq. 1 becomes zero. The highest
utilization under Colored Refresh is 1.

K. Discussion

So far, we have considered a periodic real-time task set
on a single processor. Colored Refresh can be implemented
on multicore platforms where multiple task partitions are
running simultaneously. Colored Refresh simply schedules the
execution of multiple task partitions at a time when their



allocated colors are not being refreshed. Variables shared
between tasks would require additional constraints to ensure
they are accessed when not being refreshed. Furthermore,
sporadic tasks and non-real-time tasks can also be placed into
frames and scheduled with Colored Refresh with an admission
test based on ei from Eq. 1 similar to past work [22], [27].
Actually, within each frame, both distributed refresh and burst
refresh could be implemented. Colored Refresh implements
burst refresh at the start of each frame. After the burst refresh
finishes, the time left in this frame becomes refresh-free for
memory accesses, which provides more flexibility for other
tasks to be scheduled [16].

The refresh task under Colored Refresh is still modeled as
the highest priority task, but it can be co-scheduled with an-
other real-time task of a different color on the same processor.
This allows us to model resource constraints such that a real-
time task of the same color as an active refresh task cannot
preempt the refresh task due to their priority assignments.

Furthermore, we consider long tasks with (i) a period equal
to or larger than DRAM retention time and (ii) slack between
its period and execution time that is less than the minimum
frame size.

pi − ei <
R

K
, and pi ≥ R

The DRAM refresh overhead of a long task cannot be hidden
completely through Colored Refresh, neither by splitting into
multiple job slices nor by task copying. As a result, the
utilization of a long task under Colored Refresh is

U ≤ 1− tRFC
tREFI

∗ rankReq
K

,

where rankReq = ⌈memAllocSize
rankSize

⌉.
“rankReq” represents the lower bound of memory ranks that
should be assigned to a long task, which is determined by how
much memory it allocates and the size of one rank.
The system utilization of a long task is still enhanced by
Colored Refresh compared to auto-refresh, although refresh
overhead is only partly hidden for a long task. Furthermore,
since we use a burst refresh in each frame, the remaining
refresh overhead is predictable as a single task is colored to
specific ranks. Notice that task splitting can be implemented
by loop fission after the ith iteration of an outer loop. Should
a resource be held, it would be split across adjacent tasks
executing back-to-back, where the former locks and the latter
unlocks a mutex assuming POSIX-style locking.

L. Overhead of Colored Refresh

In order to hide DRAM refresh overhead, Colored Refresh
imposes task copying and splitting costs. While not free, split
overhead is predictable since split points are known statically.
Furthermore, the cost of task copying is extremely small,

as quantified by globalMem
bandwidth

. Here, globalMem denotes the
cumulative size of variables that need to be copied from
a current to the next job’s memory space, and bandwidth
represents the memory bandwidth. We can determine if a task
benefits from task copying by comparing the copy cost to
the overhead it would suffer under refresh-incurred blocking
instead:
globalMem
bandwidth

≤ tRFC
tRFI

∗ e, where e is the task’s execution time

and tRFC
tRFI

∗ e represents the overhead due to refresh (upper
bound) that would have to be considered in a blocking term
during schedulability analysis.

Example: The cost of one refresh operation is
tRFC=350ns, and the length of a refresh interval is
tRFI=7.8us for 8Gb DRAM density, which is common
in commercial off-the-shelf embedded systems, GPU-
enhanced embedded platforms for autonomous driving, and
smartphones [1], [13]. If the execution time of a given task is
1ms and memory bandwidth is 10GB/s, globalMem=0.5M
is the break-even point, i.e., the cost of task copying is lower
for smaller copy sizes than suffering from refresh blocking.
Notice that 0.5MB is larger than one I-frame of a typical
MPEG stream, of which only one frame is needed roughly
per 10ms at 30-60 frames/sec. Or consider two 250×250
double-precision matrices (which is less than 0.5MB) that are
multiplied, with an execution time that far exceeds 1ms, i.e.,
no copy task would be required. After all, the execution time
exceeds 1ms so that this task’s period also has to be larger
than the refresh duration. Thus, we conjecture that 0.5MB is
quite sufficient to forward outputs of one job to the next for a
real-time task with 1ms execution time and a short period in
the same range. (Notice that conventional memory accesses
with the task are already modeled by assessing the execution
time of the task, which is actually reduced due to absence
of refreshes compared to a scenario without coloring or copy
tasks.)

The cost is strictly dominated by refreshes — overheads
due to closing pages are very small as only one close would
be inflicted per burst refresh when comparing open to closed
page policies. Furthermore, memory can be partitioned even if
the number of tasks exceeds the number of ranks since cyclic
executives are non-preemptive. In fact, two colors/ranks suffice
to hide a burst refresh of one half of the ranks followed later
by a burst refresh of the other half. Additional colors may
distribute many shorter burst refreshes, but since f < tRFC,
this provides no benefit in costs or overhead. If one task has
high memory demand, the two sets of memory may have more
ranks in one set than another, and the task in question may
be allocated more than one rank. We can further relax our
assumptions and allow task dependencies, which are realized
in cyclic executives by ensuring that job Jij of Task Ti is
released at or before Jkl of Tk, i.e., rij ≤ rkl, as are their
deadlines, Dij ≤ Dkl [27].

IV. IMPLEMENTATION

System Architecture: Our experimental framework con-
sists of three components. (1) SimpleScalar 3.0 [29] simulates
application execution and generates memory traces for last-
level cache (LLC) misses, which includes request intervals,
physical address, command type, command size, etc. Each
LLC miss results in a memory request (memory transaction)
from processor to DRAM (see Fig. 6). Red/solid blocks and
lines represent the LLC misses during application execution.

(2) Our coloring tool colors memory transactions based on
a transaction’s physical address and the coloring policy.

(3) Memory traces are relayed to RTMemController [30],
a back-end architecture to assess commodity and real-time
memory controllers, where we utilize only the commodity
controller model. RTMemController schedules each memory
transaction and determines its execution time, which is fed
back to SimpleScalar to determine the overall execution time.
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Fig. 6. System Architecture

Instead of using same memory latency for every tasks (the
default), we enhanced SimpleScalar to use the average of
RTMemController’s memory latency for memory transactions
per task, which includes the refresh overhead.

We extended RTMemController to support DDR4 refreshes
and refresh for a subset of ranks (needed by Colored Refresh
and supported by any DDR memory controller). The perfor-
mance of DRAM is analyzed by the enhanced RTMemCon-
troller, which schedules the DRAM refresh commands at rank
granularity. Refresh is considered when the memory controller
serves a memory transaction whose rank ID is derived from
the physical address. If this rank is under refresh per schedule,
a refresh command is issued in addition to the transaction. This
incurs Refresh, Activate and Precharge commands plus purging
of the bank’s row buffer for a row buffer miss. Our enhanced
RTMemController refreshes all ranks in round-robin order and
completes all refreshes within DRAM retention time.

Coloring Tool: To hide the refresh overhead for real-time
systems, our approach requires that each task be assigned a
memory segment via colored memory allocation. We ported
TintMalloc [25] to SimpleScalar so that it can select the color
of physical addresses in memory for any memory request
(stack, code, heap, data segments). A memory coloring policy
is configured for each application assigning it as many colors
as needed to meet the application’s memory requirement.
TintMalloc’s port reads an application’s memory trace and
scans the physical addresses accessed. To color a memory
space, the Rank ID of each physical address is calculated
and then checked if it maps to the colors assigned to this
application. In our case, the rank ID is determined by bits 15-
17 of the physical address. If the Rank ID does not match,
these bits are set to the task’s respective color. Otherwise,
the physical address remains unchanged. To avoid duplicate
physical addresses, TintMalloc’s port not only changes the rank
ID of the physical address, but also assigns it to a free page of
the corresponding color (see Algorithm 2). We further retain
page locality (and thus cache locality) of physical addresses,
i.e., if two physical addresses originally reside in the same
page, they still share a page after coloring. Once colored, all
physical addresses in a trace belong to a particular memory
segment (color). The application only accesses this specific
area as per coloring policy.

Algorithm 2 Memory Coloring

1: Input: memTran, task
2: page = ColoredFreeList[task→color]
3: memTran→addr = (memTran→addr && 0xfff) —— (page→addr &&

0xfffff000)

Discussion: Copy tasks introduce the main change to
memory behavior. A copy task is created separately from its
original instance, i.e., we can treat the copy task as a different
task than original one with precedence constraints enforced by
the schedule (release times and deadlines). The memory state
of the original task is transferred to that of the copy task before
it runs and transferred back after it has run. These memory
transfers warm up caches, but they have to be accounted for
as overhead, which we analyze in our work (and Sec III-L
shows that it is very small).

While we evaluate our approach by simulator, it shall
be noted that it can be ported onto a real architecture with
engineering effort [16]. The scheduling policies of Colored
Refresh can be realized by modifying the scheduler inside
a real-time operating system kernel. Our mechanism utilizes
existing DRAM-triggered periodic refreshes combined soft-
ware for coloring tasks in a cyclic executive without requiring
any hardware change. DRAM refreshes are synchronous with
processor clock (if the clock is fixed) and can, in fact,
optionally be disabled for a subset of ranks [31]. Furthermore,
per-rank refresh activation phasing can be reverse engineered
by monitoring access latencies during the initialization of our
approach.

V. EVALUATION FRAMEWORK AND RESULTS

Experimental Setup: We assessed Malardalen WCET
benchmark programs [32], modified to operate on much larger
data structures and with higher loop bounds and also to match
multiples of 1ms to facilitate analysis, on the SimpleScalar 3.0
processor simulator with split data and instruction caches of
16KB size each, a unified L2 cache of 128KB size, and a cache
line size of 64B. The memory system is a JEDEC-compliant
DDR3 SDRAM (DDR3-1600G) with varied memory density
(1, 2, 4, 8, 16, 32, and 64Gb). The DRAM retention time (R) is
64 ms. Furthermore, there are 8 ranks (K=8) and one memory
controller on a DRAM chip. Refresh commands are issued by
memory controllers at rank granularity.

The Malardalen benchmarks are used to evaluate different
types of worst-case execution time (WCET) analysis tools
and methods. In our experiment, we analyze the WCET of
Malardalen benchmarks and evaluate the real-time perfor-
mance of our Colored Refresh. Due to space limitations,
we constrain results to the Malardalen benchmarks, but our
approach also works well with other workloads, such as
memory-intensive and CPU-intensive programs. As shown in
Sec. III-L, our Colored Refresh obtains performance improve-
ments even for memory-intensive (MPEG stream) or CPU-
intensive (matrices multiplication) workloads.

We make a case for platforms with more ranks for real-
time systems. Our platform has 1 channel with 4 ranks, where
each memory controller has 2 channels. The more the better,
and developers may deliberately choose platforms to benefit
from more ranks early on during the design.

A. Real-time Tasks

Multiple Malardalen applications are scheduled as real-
time tasks under Colored Refresh, each with the largest input
to trigger maximum (worst case) memory requirements (see
assumptions in Sec. III).



Tab. IV. Tasks and their Memory Assignment

Program Period Exec. time Occupied frames Available colors (ci)

lms 20ms 4ms f1 − f8 colored with copy task

compress 32ms 6ms f1,f3,f4,f5,f7,f8 c2,c6
cnt 32ms 8ms f3,f4,f7,f8 c1,c2,c5,c6
st 40ms 8ms f2,f4,f6,f8 c1,c3,c5,c7

matmult 80ms 10ms f2,f3,f4,f6,f7,f8 c1,c5

Tab. V. Colors/Task

T program color

A lms c7

Â lms copy task c8
B compress c2
C cnt c1
D st c3
E matmult c5

Table IV shows each Malardalen task’s execution time
(padded by adjusting loop bounds to the indicated values) and
period (deadline). Here, the execution time is measured under
an ideal method that performs no refreshes. Although this ideal
method is infeasible in a reality, we model it in simulation as
it provides a lower bound.

For these real-time tasks of Table IV, the hyperperiod H is
160ms, and L is 320ms (given H and R=64ms). By rules (1)-
(5) in Colored Refresh, f=8ms is chosen for our system (K=8),
and a feasible cyclic schedule is shown in Fig. 7, where c
indicates the color that is being refreshed (repeats at R=64ms).
Table IV shows the available memory colors per task. Colored
Refresh assigns one of its available colors to compress, cnt,
st and matmult. But for lms, “copy tasks” are created since it
occupies all frames. Table V indicates one feasible selection of

colors after creating copy task Â (see in Fig. 7) for the intervals

176 . . . 184 and 240 . . . 248. Notice that at t=180 and t=240, Â
executes instead of A since c = 7 is being refreshed. Preceding

each Â, the job of A (t=160 and t=220) copies shared state

from color c7 → c8, and the Â jobs from c8 → c7, which is
included as 0.05% of the WCET of lms (task A) according to
Sec. III-L.

Fig. 7. A Schedule with Copy Tasks

We compared the system utilization under Auto-Refresh,
Colored Refresh, and Non-Refresh configurations. Fig. 8
shows the utilization (y-axis starting at 0.96) for different
DRAM densities (x-axis) of this real-time task set under
different refresh methods. A lower utilization indicates better
performance since the real-time system has more slack to
guarantee schedulability.

Fig. 8 shows that this real-time task set is always schedu-
lable under our approach with any DRAM density. Under
Auto-Refresh, the task set is schedulable for small densities
(<16Gb) but becomes infeasible (above 1.0) for higher densi-
ties (≥16Gb) so that deadlines are missed as additional refresh
overhead pushes utilization to above 100%. Also, since the
maximum possible frame size for a standard cyclic executive is

12ms (larger than all tasks’ execution times), matmult requires
task splitting for our approach. Assuming a copy+split over-
head (see Sec. III-L) for lms+matmult, respectively, Colored
Refresh suffers 0.05% overhead relative to Non-Refresh, which
originates from one additional context switch plus cold cache
misses for lms (2.789usecs) and two times two copy overheads
(16KB/10GBps=1.6usecs) each for matmult. This overhead
is extremely small and remains constant as DRAM density
grows.

Observation 1: Compared to Auto-Refresh, Colored Refresh
reduces task execution time and enhances system utilization
by hiding refresh overhead completely, which increases pre-
dictability while preserving real-time schedulability.

As DRAM density grows, the performance of Auto-Refresh
decreases (resulting in a larger utilization for the same task set)
since higher DRAM density implies more refresh overhead,
i.e., additional rows are refreshed per interval. In contrast, Col-
ored Refresh remains stable with increasing DRAM density.
For example, with 1Gb DRAM density, Auto-Refresh results in
0.47% larger utilization than Colored Refresh. However, when
DRAM density grows to 32Gb and then 64Gb, the task set’s
utilization under Auto-Refresh is 7.57% and 15.35% higher,
respectively, than Colored Refresh. This is because tasks only
access colored memory not subject to DRAM refresh delays
under our approach.

Observation 2: Colored Refresh obtains stable and pre-
dictable performance irrespective of DRAM size while Auto-
Refresh’s overhead increases significantly with DRAM size.

B. DRAM Performance

Each task only accesses the coloring memory space as-
signed to it in our approach, while the memory controller sends
refresh command as described in Section III-G. Let us discuss
the impact on DRAM performance under Colored Refresh.

Fig. 9 shows the normalized average memory access la-
tency (y-axis) of Auto-Refresh over our approach for different
tasks (x-axis). Since our approach hides the entire DRAM
refresh overhead, the memory latency of our approach equals
to non-refresh at each DRAM density. Furthermore, the mem-
ory latency of our approach remains stable/same with growing
DRAM density.

Red/solid lines inside the boxes mark the median
while the green/dotted lines denote averages across the 5
tasks, “whiskers” above/below the box indicate the maxi-
mum/minimum. Fig. 9 shows that the memory latency is
increased for all benchmarks by auto-refresh compared to our
approach. Our Colored Refresh obtains a small latency reduc-
tion at low DRAM density (6.5% on avg. at 1Gb density) that





also other DRAM technology, e.g., RLDRAM [26], makes
memory references more predictable but is subject to the same
refresh blocking, i.e., our refresh hiding is directly applicable
to them as well.

Bhat et al. [16] try to make DRAM refresh predictable for
real-time embedded system. Instead of hardware auto-refresh,
a software-initiated burst refresh is issued at the beginning of
every DRAM retention time period. After this refresh burst
completes, there is no refresh interference for regular memory
accesses during the remainder of DRAM retention time. But
the memory remains unavailable during the DRAM retention
period, and any stall time due to references to memory under
refresh increases rapidly when DRAM density/size grows.
Although memory latency is predictable, memory throughput
is still lower due to a refresh delay compared to our Colored
Refresh.

Pan et al. [39] exploit hierarchical scheduling of refresh,
lock/unlock, and server tasks at the top level and real-time
tasks inside servers subject to memory partitioning (coloring).
Their method supports priority scheduling inside a server and
requires interrupts from the memory controller when a refresh
completes, or from an equivalent timer. In contrast, we focus
on cyclic executives and show how refresh cost can be hidden
without hardware modifications.

Selective DRAM Refresh [40] uses a reference bit per row
to record and determine if this row needs to be refreshed,
which reduces die space relative to Smart Refresh [12]. But
the performance of Selective DRAM Refresh still heavily
depends on the data access pattern. VRL-DRAM [41] develops
a detailed analytical model to estimate the minimum latency of
a refresh operation in order to reduce the refresh performance
overhead. But it still cannot hide all refresh overhead, and it is
implemented inside the memory controller. More importantly,
VRL-DRAM cannot provide predictable memory performance
by reducing refresh overhead. It is still too pessimistic to pre-
dict tight WCETs for real-time systems. Our Colored Refresh
is agnostic of data access patterns, and it does not need extra
die space while its time overhead is small.

Stuecheli et al. [5] describe Elastic Refresh, which uses
predictive mechanisms to decrease the probability of a mem-
ory access interfering with a refresh. Elastic Refresh queues
refresh commands and schedules them when a DRAM rank is
idle. This way, some interferences between memory accesses
and refreshes can be avoided. However, as tRFC increases
with growing DRAM density, the probability of avoiding
interferences decreases. In contrast, our Colored Refresh can
hide all refresh delays for regular memory accesses, and its
performance is not affected by increasing DRAM density.

Hardware solutions have not been adopted by any vendor.
Since our mechanism is completely implemented in software
(no hardware change required), it is applicable on today’s
devices. Since our focus is on available hardware platforms, we
did not compare to hardware solutions [6], [7], [8], [9], [10].
Other software solutions (e.g., RAIDR [2], Smart Refresh [12],
RAPID [11], et. al.) either heavily rely on specific data
access patterns of workloads, or they have high implementation
overhead, which makes the problem much worse for real-time
system. To the best of our knowledge, our Colored Refresh
is the first solution that can hide all refresh overhead for real-

time system, i.e., we do not compare to those schemes because
worst-case execution times remain just as pessimistic for [2],
[12], [11] etc. as they cannot hide refresh overhead.

VII. CONCLUSION

We analyzed the impact of DRAM refresh delay on the
predictability and performance for real-time systems. We pro-
posed Colored Refresh, a novel refresh method to hide DRAM
refresh overheads at the software level for cyclic executive
scheduling of real-time systems, e.g., in highly critical systems.
With Colored Refresh, a memory rank is either accessed by a
processor or refreshed by the DRAM controller at any time,
but not both. Experimental results confirmed that our approach
hides refresh overhead for real-time task execution, thus en-
hancing their predictability and memory throughput. Compared
to previous work, Colored Refresh can be safely implemented
without much overhead (less than 1% for task copying and
splitting) irrespective of increasing DRAM density/sizes, yet
with better memory performance than DDR4 Fine Granularity
Refresh.
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